霍尔德(Hölder)不等式

引理

p , q > 0 , 1 p + 1 q = 1. p,q>0,\frac1p+\frac1q=1. p,q>0p1+q1=1. x 1 p y 1 q ≤ x p + y q ,    ∀    x , y ≥ 0 , x^{\frac1p}y^{\frac1q} \leq \frac xp+ \frac yq,\;\forall\;x,y\geq 0, xp1yq1px+qy,x,y0,等号仅当 x = y x=y x=y 时成立。


证明:

考察对数函数 l o g ( x ) log(x) log(x),她显然是一个凹函数: l o g ( θ x + ( 1 − θ ) y ) ≥ θ l o g ( x ) + ( 1 − θ ) l o g ( y ) log(\theta x+(1-\theta)y) \geq \theta log(x) +(1-\theta)log(y) log(θx+(1θ)y)θlog(x)+(1θ)log(y) θ = 1 p \theta = \frac1p θ=p1,则 1 − θ = 1 q 1-\theta = \frac1q 1θ=q1,故 l o g ( 1 p x + 1 q y ) ≥ 1 p l o g ( x ) + 1 q l o g ( y ) log(\frac1p x+\frac1qy) \geq \frac1p log(x) +\frac1qlog(y) log(p1x+q1y)p1log(x)+q1log(y)两边同时去指数,得 x p + y q ≥ x 1 p y 1 q \frac xp+ \frac yq \geq x^{\frac1p}y^{\frac1q} px+qyxp1yq1


Hölder 不等式

对引理中的不等式,做如下替换 x i = a i p ∑ j = 1 n a j p ,      y i = b i q ∑ j = 1 n b j q x_i = \frac{a_i^p}{\sum_{j=1}^{n}a_j^p},\;\;y_i = \frac{b_i^q}{\sum_{j=1}^{n}b_j^q} xi=j=1najpaip,yi=j=1nbjqbiq得到 n 个不等式: a i b i ( ∑ j = 1 n a j p ) 1 p ( ∑ j = 1 n b j q ) 1 q ≤ 1 p a i p ∑ j = 1 n a j p + 1 q b i q ∑ j = 1 n b j q \frac{a_ib_i}{(\sum_{j=1}^{n}a_j^p)^{\frac1p}(\sum_{j=1}^{n}b_j^q)^{\frac1q}} \leq \frac1p\frac{a_i^p}{\sum_{j=1}^{n}a_j^p}+\frac1q\frac{b_i^q}{\sum_{j=1}^{n}b_j^q} (j=1najp)p1(j=1nbjq)q1aibip1j=1najpaip+q1j=1nbjqbiq将上式两边对 i = 1 , 2 , ⋅ ⋅ ⋅ , n i=1,2,···,n i=1,2,,n 求和,就得到 ∑ i = 1 n a i b i ( ∑ j = 1 n a j p ) 1 p ( ∑ j = 1 n b j q ) 1 q ≤ 1 p + 1 q = 1 , \frac{\sum_{i=1}^{n}a_ib_i}{(\sum_{j=1}^{n}a_j^p)^{\frac1p}(\sum_{j=1}^{n}b_j^q)^{\frac1q}} \leq \frac1p+\frac1q = 1, (j=1najp)p1(j=1nbjq)q1i=1naibip1+q1=1, ⇒ ∑ i = 1 n a i b i ≤ ( ∑ j = 1 n a j p ) 1 p ( ∑ j = 1 n b j q ) 1 q \Rightarrow\sum_{i=1}^{n}a_ib_i \leq (\sum_{j=1}^{n}a_j^p)^{\frac1p}(\sum_{j=1}^{n}b_j^q)^{\frac1q} i=1naibi(j=1najp)p1(j=1nbjq)q1
上式要求 a i , b i ≥ 0 a_i,b_i \geq 0 ai,bi0。否则,需要给等式右端的 a i , b i a_i,b_i ai,bi 加上绝对值,得到如下不等式: a T b ≤ ∣ ∣ a ∣ ∣ p ∣ ∣ b ∣ ∣ q a^Tb \leq ||a||_p||b||_q aTbapbq事实上, ∣ ∣ ⋅ ∣ ∣ q ||·||_q q正是 ∣ ∣ ⋅ ∣ ∣ p ||·||_p p对偶范数

  • 7
    点赞
  • 0
    评论
  • 13
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

打赏
文章很值,打赏犒劳作者一下
相关推荐
©️2020 CSDN 皮肤主题: 程序猿惹谁了 设计师:白松林 返回首页

打赏

颹蕭蕭

白嫖?

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者